GGR publications
The publications listed below are direct or indirect outputs from the Greenhouse Gas Removal research programme, with authorship including a GGR-supported researcher. You can browse these by year: 2021, 2020, 2019, 2018, 2017. Some of these may have resulted from work initiated before the start of the programme, or supported through co-funding. Most of these publications have been independently peer-reviewed and/or published in World-of-Science listed journals. Those not subject to such scrutiny, but nevertheless considered worthy of inclusion, are given in italics. These include international conference abstracts cited in Google Scholar and/or WoS, and ‘full-text’ conference papers. However, other conference abstracts and posters are not included here. Relevant media coverage can be browsed by year: 2018, 2017.
Information on print publication overrides that for online publication (e.g. Discussions version) of the same paper; however, the latter details are given if the former are currently lacking.
Updated May 2021
2021
Payen, F. T., Sykes, A., Aitkenhead, M., Alexander, P., Moran, D., & MacLeod, M. (2021). Soil organic carbon sequestration rates in vineyard agroecosystems under different soil management practices: A meta-analysis. Journal of Cleaner Production, 290, 125736. https://doi.org/10.1016/j.jclepro.2020.125736
Pogge von Strandmann, P. A. E., Renforth, P., West, A. J., Murphy, M. J., Luu, T. H., & Henderson, G. M. (2021). The lithium and magnesium isotope signature of olivine dissolution in soil experiments. Chemical Geology, 560(May 2020), 120008. https://doi.org/10.1016/j.chemgeo.2020.120008
Qin, Z., Griscom, B., Huang, Y., Yuan, W., Chen, X., Dong, W., Li, T., Sanderman, J., Smith, P., Wang, F., & Yang, S. (2021). Delayed impact of natural climate solutions. Global Change Biology, 27(2), 215–217. https://doi.org/10.1111/gcb.15413
Sandison, F., Hillier, J., Hastings, A., Macdonald, P., Mouat, B., & Marshall, C. T. (2021). The environmental impacts of pelagic fish caught by Scottish vessels. Fisheries Research, 236(February 2020), 105850. https://doi.org/10.1016/j.fishres.2020.105850
Seddon, N., Smith, A., Smith, P., Key, I., Chausson, A., Girardin, C., House, J., Srivastava, S., & Turner, B. (2021). Getting the message right on nature-based solutions to climate change. Global Change Biology, 27(8), 1518–1546. https://doi.org/10.1111/gcb.15513
Shan, Y., Ou, J., Wang, D., Zeng, Z., Zhang, S., Guan, D., & Hubacek, K. (2021). Impacts of COVID-19 and fiscal stimuli on global emissions and the Paris Agreement. In Nature Climate Change (Vol. 11, Issue 3, pp. 200–206). https://doi.org/10.1038/s41558-020-00977-5
Sharmina, M., Edelenbosch, O. Y., Wilson, C., Freeman, R., Gernaat, D. E. H. J., Gilbert, P., Larkin, A., Littleton, E. W., Traut, M., van Vuuren, D. P., Vaughan, N. E., Wood, F. R., & Le Quéré, C. (2021). Decarbonising the critical sectors of aviation, shipping, road freight and industry to limit warming to 1.5–2°C. Climate Policy, 21(4), 455–474. https://doi.org/10.1080/14693062.2020.1831430
Shepherd, A., Martin, M., & Hastings, A. (2021). Uncertainty of modelled bioenergy with carbon capture and storage due to variability of input data. GCB Bioenergy, 13(4), 691–707. https://doi.org/10.1111/gcbb.12803
Xing, L., Darton, R. C., & Yang, A. (2021). Enhanced weathering to capture atmospheric carbon dioxide: Modeling of a trickle-bed reactor. AIChE Journal, 67(5), 1–18. https://doi.org/10.1002/aic.17202
2020
Algunaibet, I. M., Pozo, C., ´ngel Galá N-Martí, A., Huijbregts, M. A. J., MacDowell, N., & Guillé N-Gosá, G. (2020). Reply to the ‘Comment on “‘Powering sustainabledevelopment within planetary boundaries’”’by Y. Yang,Energy Environ. Sci., 2020, 13,DOI: 10.1039/C9EE01176E. Energy Environ. Sci, 13, 13. https://doi.org/10.1039/C9EE01176E
Ball, K. R., Baldock, J. A., Penfold, C., Power, S. A., Woodin, S. J., Smith, P., & Pendall, E. (2020) Soil organic carbon and nitrogen pools are increased by mixed grass and legume cover crops in vineyard agroecosystems: Detecting short-term management effects using infrared spectroscopy. Geoderma, 379. https://doi.org/10.1016/j.geoderma.2020.114619
Beerling, D. J., Kantzas, E. P., Lomas, M. R., Wade, P., Eufrasio, R. M., Renforth, P., Sarkar, B., Grace Andrews, M., James, R. H., Pearce, C. R., Mercure, J.-F., Pollitt, H., Holden, P. B., Edwards, N. R., Khanna, M., Koh, L., Quegan, S., Pidgeon, N. F.. (2020) Potential for large-scale CO 2 removal via enhanced rock weathering with croplands. Nature, 583. https://doi.org/10.1038/s41586-020-2448-9
Bossio, D. A., Cook-Patton, S. C., Ellis, P. W., Fargione, J., Sanderman, J., Smith, P., Wood, S., Zomer, R. J., von Unger, M., Emmer, I. M., & Griscom, B. W. (2020) The role of soil carbon in natural climate solutions. Nature Sustainability, 3(5), 391–398. https://doi.org/10.1038/s41893-020-0491-z
Butnar, I., Li, P. H., Strachan, N., Portugal Pereira, J., Gambhir, A., & Smith, P. (2020) A deep dive into the modelling assumptions for biomass with carbon capture and storage (BECCS): A transparency exercise. Environmental Research Letters, 15(8). https://doi.org/10.1088/1748-9326/ab5c3e
Donnison, C., Holland, R. A., Hastings, A., Armstrong, L. M., Eigenbrod, F., & Taylor, G. (2020) Bioenergy with Carbon Capture and Storage (BECCS): Finding the win–wins for energy, negative emissions and ecosystem services—size matters. GCB Bioenergy, 12(8), 586–604. https://doi.org/10.1111/gcbb.12695
Farina, R., Sándor, R., Abdalla, M., Álvaro-Fuentes, J., Luca Bechini, Bolinder, M. A., Brilli, L., Chenu, C., Taghizadeh-Toosi, A., Tsutskikh, E., & Bellocchi, Gianni.(2020) Ensemble modelling, uncertainty and robust predictions of organic carbon in long-term bare-fallow soils. Global Change Biology, 4. https://doi.org/10.1111/gcb.15441
Field, R. H., Buchanan, G. M., Hughes, A., Smith, P., & Bradbury, R. B. (2020) The value of habitats of conservation importance to climate change mitigation in the UK. Biological Conservation, 248. https://doi.org/10.1016/j.biocon.2020.108619
Forster, J., Vaughan, N. E., Gough, C., Lorenzoni, I., & Chilvers, J. (2020) Mapping feasibilities of greenhouse gas removal: Key issues, gaps and opening up assessments. Global Environmental Change, 63(November 2019), 102073. https://doi.org/10.1016/j.gloenvcha.2020.102073
Godde, C. M., de Boer, I. J. M., Ermgassen, E. zu, Herrero, M., van Middelaar, C. E., Muller, A., Röös, E., Schader, C., Smith, P., van Zanten, H. H. E., & Garnett, T. (2020) Soil carbon sequestration in grazing systems: managing expectations. Climatic Change, 161(3), 385–391. https://doi.org/10.1007/s10584-020-02673-x
Goglio, P., Williams, A. G., Balta-Ozkan, N., Harris, N. R. P., Williamson, P., Huisingh, D., Zhang, Z., & Tavoni, M. (2020). Advances and challenges of life cycle assessment (LCA) of greenhouse gas removal technologies to fight climate changes. In Journal of Cleaner Production (Vol. 244, p. 118896). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2019.118896
Griscom, B. W., Busch, J., Cook-Patton, S. C., Ellis, P. W., Funk, J., Leavitt, S. M., Lomax, G., Turner, W. R., Chapman, M., Engelmann, J., Gurwick, N. P., Landis, E., Lawrence, D., Malhi, Y., Murray, L. S., Navarrete, D., Roe, S., Scull, S., Smith, P. (2020). National mitigation potential from natural climate solutions in the tropics. Phil Transactions B, 375. https://doi.org/10.1098/rstb.2019.0126
Hastings, A., & Smith, P. (2020) Achieving Net Zero Emissions Requires the Knowledge and Skills of the Oil and Gas Industry. Frontiers in Climate, 2(December), 1–11. https://doi.org/10.3389/fclim.2020.601778
Hayman, G., Comyn-Platt, E., Huntingford, C., Harper, A., Powell, T., Cox, P., Collins, W., Webber, C., Lowe, J., Sitch, S., House, J., Doelman, J., van Vuuren, D., Chadburn, S., Burke, E., & Gedney, N. (2020) Regional variation in the effectiveness of methane-based and land-based climate mitigation options. Earth System Dynamics Discussions, 1–41. https://doi.org/10.5194/esd-2020-24
Henner, D. N., Hastings, A., Pogson, M., McNamara, N. P., Davies, C. A., & Smith, P. (2020). PopFor: A new model for estimating poplar yields. Biomass and Bioenergy, 134, 105470. https://doi.org/10.1016/j.biombioe.2020.105470
Jens Kattge, C. (2020) TRY plant trait database-enhanced coverage and open access. Glob Change Biol, 26, 119–188. https://doi.org/10.1111/gcb.14904
Jing, R., Hastings, A., & Guo, M. (2020). Sustainable Design of Urban Rooftop Food-Energy-Land Nexus. IScience, 23(11), 101743. https://doi.org/10.1016/j.isci.2020.101743
Jorat, M. E., Goddard, M. A., Manning, P., Lau, H. K., Ngeow, S., Sohi, S. P., & Manning, D. A. C. (2020). Passive CO2 removal in urban soils: Evidence from brownfield sites. Science of the Total Environment, 703, 135573. https://doi.org/10.1016/j.scitotenv.2019.135573
Karstens, K., Bodirsky, B. L., Dietrich, J. P., Dondini, M., Heinke, J., Kuhnert, M., Müller, C., Rolinski, S., Smith, P., Weindl, I., Lotze-Campen, H., & Popp, A (2020). Management induced changes of soil organic carbon on global croplands. Biogeosciences Discussions, December, 1–30. https://doi.org/10.5194/bg-2020-468
Kelemen, P. B., McQueen, N., Wilcox, J., Renforth, P., Dipple, G., & Vankeuren, A. P. Engineered carbon mineralization in ultramafic rocks for CO2 removal from air: Review and new insights. (2020) Chemical Geology, 550(May), 119628. https://doi.org/10.1016/j.chemgeo.2020.119628
Lefebvre, D., Williams, A., Meersmans, J., Kirk, G. J. D., Sohi, S., Goglio, P., & Smith, P. (2020) Modelling the potential for soil carbon sequestration using biochar from sugarcane residues in Brazil. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-76470-y
Littleton, E. W., Harper, A. B., Vaughan, N. E., Oliver, R. J., Duran-Rojas, M. C., & Lenton, T. M. (2020) JULES-BE: Representation of bioenergy crops and harvesting in the Joint UK Land Environment Simulator vn5.1. Geoscientific Model Development, 13(3), 1123–1136. https://doi.org/10.5194/gmd-13-1123-2020
Logan, K. G., Nelson, J. D., & Hastings, A. (2020) Electric and hydrogen buses: Shifting from conventionally fuelled cars in the UK. Transportation Research Part D: Transport and Environment, 85(May), 102350. https://doi.org/10.1016/j.trd.2020.102350
Logan, K. G., Nelson, J. D., Lu, X., & Hastings, A (2020). UK and China: Will electric vehicle integration meet Paris agreement targets? Transportation Research Interdisciplinary Perspectives, 8. https://doi.org/10.1016/j.trip.2020.100245
Lu, T., Wang, X., Xu, M., Yu, Z., Luo, Y., & Smith, P. (2020). Dynamics of pedogenic carbonate in the cropland of the North China Plain: Influences of intensive cropping and salinization. Agriculture, Ecosystems and Environment, 292, 106820. https://doi.org/10.1016/j.agee.2020.106820
Marieni, C., Matter, J. M., & Teagle, D. A. H. (2020). Experimental study on mafic rock dissolution rates within CO2-seawater-rock systems. Geochimica et Cosmochimica Acta, 272, 259–275. https://doi.org/10.1016/j.gca.2020.01.004
McElwee, P., Calvin, K., Campbell, D., Cherubini, F., Grassi, G., Korotkov, V., Le Hoang, A., Lwasa, S., Nkem, J., Nkonya, E., Saigusa, N., Soussana, J. F., Taboada, M. A., Manning, F., Nampanzira, D., & Smith, P. (2020) The impact of interventions in the global land and agri-food sectors on Nature’s Contributions to People and the UN Sustainable Development Goals. Global Change Biology, 26(9), 4691–4721. https://doi.org/10.1111/gcb.15219
McLaren, D., & Markusson, N. (2020) The co-evolution of technological promises, modelling, policies and climate change targets. Nature Climate Change, 10, 392–397. https://doi.org/10.1038/s41558-020-0740-1
McLaren, D. (2020) Quantifying the potential scale of mitigation deterrence from greenhouse gas removal techniques. Climatic Change, 162, 2411–2428. https://doi.org/10.1007/s10584-020-02732-3
McQueen, N., Kelemen, P., Dipple, G., Renforth, P., & Wilcox, J. (2020) Ambient weathering of magnesium oxide for CO2 removal from air. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-16510-3
Molotoks, A., Henry, R., Stehfest, E., Doelman, J., Havlik, P., Krisztin, T., Alexander, P., Dawson, T. P., & Smith, P. (2020). Comparing the impact of future cropland expansion on global biodiversity and carbon storage across models and scenarios. Phil Transactions B, 375. https://doi.org/10.1098/rstb.2019.0189
Nisbet, E. G., Fisher, R. E., Lowry, D., France, J. L., Allen, G., Bakkaloglu, S., Broderick, T. J., Cain, M., Coleman, M., Fernandez, J., Forster, G., Griffiths, P. T., Iverach, C. P., Kelly, B. F. J., Manning, M. R., Nisbet-Jones, P. B. R., Pyle, J. A. (2020). Methane Mitigation: Methods to Reduce Emissions, on the Path to the Paris Agreement. Reviews of Geophysics. https://doi.org/10.1029/2019RG000675
Pozo, C., Galán-Martín, Á., Reiner, D. M., Mac Dowell, N., & Guillén-Gosálbez, G. (2020) Equity in allocating carbon dioxide removal quotas. Nature Climate Change, 10(7), 640–646. https://doi.org/10.1038/s41558-020-0802-4
Ražauskaitė, R., Vanguelova, E., Cornulier, T., Smith, P., Randle, T., & Smith, J. U. (2020) A New Approach Using Modeling to Interpret Measured Changes in Soil Organic Carbon in Forests; The Case of a 200 Year Pine Chronosequence on a Podzolic Soil in Scotland. Frontiers in Environmental Science, 8(November), 1–18. https://doi.org/10.3389/fenvs.2020.527549
Renforth, P., & Wilcox, J. (2020) Editorial: The Role of Negative Emission Technologies in Addressing Our Climate Goals. In Frontiers in Climate (Vol. 2). https://doi.org/10.3389/fclim.2020.00001
Riley, A. L., MacDonald, J. M., Burke, I. T., Renforth, P., Jarvis, A. P., Hudson-Edwards, K. A., McKie, J., & Mayes, W. M. (2020) Legacy iron and steel wastes in the UK: Extent, resource potential, and management futures. In Journal of Geochemical Exploration (Vol. 219). https://doi.org/10.1016/j.gexplo.2020.106630
Rumpel, C., Amiraslani, F., Chenu, C., Cardenas, M. G., Kaonga, M., Koutika, L.-S., Ladha, J., Madari, B., Shirato, Y., Smith, P., Soudi, B., Soussana, J.-F., Whitehead, D., & Wollenberg, E. (2000). The 4p1000 initiative: Opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy. Ambio, 49. https://doi.org/10.1007/s13280-019-01165-2
Sándor, R., Ehrhardt, F., Grace, P., Recous, S., Smith, P., Snow, V., Soussana, J. F., Basso, B., Bhatia, A., Brilli, L., Doltra, J., Dorich, C. D., Doro, L., Fitton, N., Grant, B., Harrison, M. T., Kirschbaum, M. U. F., Klumpp, K., Laville, P., … Bellocci (2020) Ensemble modelling of carbon fluxes in grasslands and croplands. Field Crops Research, 252(September 2019), 107791. https://doi.org/10.1016/j.fcr.2020.107791
Shang, Z., Abdalla, M., Kuhnert, M., Albanito, F., Zhou, F., Xia, L., & Smith, P. (2020) Measurement of N2O emissions over the whole year is necessary for estimating reliable emission factors. Environmental Pollution, 259, 113864. https://doi.org/10.1016/j.envpol.2019.113864
Shepherd, A., Littleton, E., Clifton-Brown, J., Martin, | Mike, & Hastings, | Astley. (2020). Projections of global and UK bioenergy potential from Miscanthus × giganteus-Feedstock yield, carbon cycling and electricity generation in the 21st century. GCB Bioenergy, 12, 287–305. https://doi.org/10.1111/gcbb.12671
Shepherd, A., Clifton-Brown, J., Kam, J., Buckby, S., & Hastings, A. (2020) Commercial experience with miscanthus crops: Establishment, yields and environmental observations. GCB Bioenergy, 12(7), 510–523. https://doi.org/10.1111/gcbb.12690
Smith, J., Yeluripati, J., Smith, P. et al. Potential yield challenges to scale-up of zero budget natural farming. Nat Sustain 3, 247–252 (2020). https://doi.org/10.1038/s41893-019-0469-x
Smith, P., Calvin, K., Nkem, J., Campbell, D., Cherubini, F., Grassi, G., Korotkov, V., Le Hoang, A., Lwasa, S., McElwee, P., Nkonya, E., Saigusa, N., Soussana, J. F., Taboada, M. A., Manning, F. C., Nampanzira, D., Arias-Navarro, C., Vizzarri, M., House, (2020) Which practices co-deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Global Change Biology, 26(3), 1532–1575. https://doi.org/10.1111/gcb.14878
Sun, W., Canadell, J. G., Yu, L., Yu, L., Zhang, W., Smith, P., Fischer, T., & Huang, Y. (2020). Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture. Global Change Biology, 26(6), 3325–3335. https://doi.org/10.1111/gcb.15001
Sykes, A. J., Macleod, M., Eory, V., Rees, R. M., Payen, F., Myrgiotis, V., Williams, M., Sohi, S., Hillier, J., Moran, D., Manning, D. A. C., Goglio, P., Seghetta, M., Williams, A., Harris, J., Dondini, M., Walton, J., House, J., & Smith, P. (2020) Characterising the biophysical, economic and social impacts of soil carbon sequestration as a greenhouse gas removal technology. Global Change Biology, 26(3), 1085–1108. https://doi.org/10.1111/gcb.14844
Thackeray, S. J., Robinson, S. A., Smith, P., Bruno, R., Kirschbaum, M. U. F., Bernacchi, C., Byrne, M., Cheung, W., Cotrufo, M. F., Gienapp, P., Hartley, S., Janssens, I., Hefin Jones, T., Kobayashi, K., Luo, Y., Penuelas, J., Sage, R., Suggett, D. J., W (2020). Civil disobedience movements such as School Strike for the Climate are raising public awareness of the climate change emergency. Global Change Biology, 26(3), 1042–1044. https://doi.org/10.1111/gcb.14978
Waller, L., Rayner, T., Chilvers, J., Gough, C. A., Lorenzoni, I., Jordan, A., & Vaughan, N. (2020) Contested framings of greenhouse gas removal and its feasibility: Social and political dimensions. Wiley Interdisciplinary Reviews: Climate Change, 11(4), 1–17. https://doi.org/10.1002/wcc.649
Waqas, M. A., Li, Y., Smith, P., Wang, X., Ashraf, M. N., Noor, M. A., Amou, M., Shi, S., Zhu, Y., Li, J., Wan, Y., Qin, X., Gao, Q., & Liu, S. (2020) The influence of nutrient management on soil organic carbon storage, crop production, and yield stability varies under different climates. Journal of Cleaner Production, 268. https://doi.org/10.1016/j.jclepro.2020.121922
Waring, B., Neumann, M., Prentice, I. C., Adams, M., Smith, P., & Siegert, M. (2020) Forests and Decarbonization – Roles of Natural and Planted Forests. Frontiers in Forests and Global Change, 3(May), 1–6. https://doi.org/10.3389/ffgc.2020.00058
Washbourne, C. L., Goddard, M. A., Le Provost, G., Manning, D. A. C., & Manning, P. (2020) Trade-offs and synergies in the ecosystem service demand of urban brownfield stakeholders. Ecosystem Services, 42(December 2019), 101074. https://doi.org/10.1016/j.ecoser.2020.101074
Zhang, B., Hastings, A., Clifton-Brown, J. C., Jiang, D., & C Faaij, A. P. (2020). Modeled spatial assessment of biomass productivity and technical potential of Miscanthus × giganteus, Panicum virgatum L., and Jatropha on marginal land in China. https://doi.org/10.1111/gcbb.12673
Zhang, Z., Meng, J., Zheng, H., Zhu, K., Du, H., & Guan, D. (2020) Production Globalization Makes China’s Exports Cleaner. One Earth, 2(5), 468–478. https://doi.org/10.1016/j.oneear.2020.04.014
Zheng, H., Zhang, Z., Wei, W., Song, M., Dietzenbacher, E., Wang, X., Meng, J., Shan, Y., Ou, J., & Guan, D. (2020) Regional determinants of China’s consumption-based emissions in the economic transition. Environmental Research Letters, 15(7). https://doi.org/10.1088/1748-9326/ab794f
2019
Aldaco, R., Butnar, I., Margallo, M., Laso, J., Rumayor, M., Dominguez-Ramos, A., Irabien, A., & Dodds, P. E. (2019). Bringing value to the chemical industry from capture, storage and use of CO 2 : A dynamic LCA of formic acid production. Science of the Total Environment, 663, 738–753. https://doi.org/10.1016/j.scitotenv.2019.01.395
Algunaibet, I. M., & Guillén-Gosálbez, G. (2019). Life cycle burden-shifting in energy systems designed to minimize greenhouse gas emissions: Novel analytical method and application to the United States. Journal of Cleaner Production, 229, 886–901. https://doi.org/10.1016/j.jclepro.2019.04.276
Algunaibet, I. M., Pozo, C., Angel Galá N-Martí, A., Huijbregts, M. A. J., Dowell, N. Mac, & Guillé N-Gosá Lbez, G. (2019). Powering sustainable development within planetary boundaries †. Energy Environ. Sci, 12(6), 1890. https://doi.org/10.1039/c8ee03423k
Algunaibet, I. M., Pozo, C., Galán-Martín, Á., & Guillén-Gosálbez, G. (2019). Quantifying the cost of leaving the Paris Agreement via the integration of life cycle assessment, energy systems modeling and monetization. Applied Energy, 242, 588–601. https://doi.org/10.1016/j.apenergy.2019.03.081
Anderson, C. M., DeFries, R. S., Litterman, R., Matson, P. A., Nepstad, D. C., Pacala, S., Schlesinger, W. H., Shaw, M. R., Smith, P., Weber, C., & Field, C. B. (2019). Natural climate solutions are not enough. Science, 363(6430), 933 LP – 934. https://doi.org/10.1126/science.aaw2741
Butnar, I., Li, P. H., Strachan, N., Portugal Pereira, J., Gambhir, A., & Smith, P. (2020). A deep dive into the modelling assumptions for biomass with carbon capture and storage (BECCS): A transparency exercise. Environmental Research Letters, 15(8). https://doi.org/10.1088/1748-9326/ab5c3e
Cabral, R. P., Bui, M., & Mac Dowell, N. (2019). A synergistic approach for the simultaneous decarbonisation of power and industry via bioenergy with carbon capture and storage (BECCS). International Journal of Greenhouse Gas Control, 87, 221–237. https://doi.org/10.1016/j.ijggc.2019.05.020
Cui, C., Shan, Y., Liu, J., Yu, X., Wang, H., & Wang, Z. (2019). CO2 emissions and their spatial patterns of Xinjiang cities in China. Applied Energy, 252, 113473. https://doi.org/10.1016/j.apenergy.2019.113473
Daggash, H. A., Heuberger, C. F., & Mac Dowell, N. (2019). The role and value of negative emissions technologies in decarbonising the UK energy system. International Journal of Greenhouse Gas Control, 81, 181–198. https://doi.org/10.1016/j.ijggc.2018.12.019
Daggash, Habiba Ahut, & Mac Dowell, N. (2019a). Higher Carbon Prices on Emissions Alone Will Not Deliver the Paris Agreement. Joule, 3(9), 2120–2133. https://doi.org/10.1016/j.joule.2019.08.008
Daggash, Habiba Ahut, & Mac Dowell, N. (2019b). Structural Evolution of the UK Electricity System in a below 2°C World. Joule, 3(5), 1239–1251. https://doi.org/10.1016/j.joule.2019.03.009
Daggash, Habiba Ahut, & Mac Dowell, N. (2019c). The implications of delivering the UK’s Paris Agreement commitments on the power sector. International Journal of Greenhouse Gas Control, 85, 174–181. https://doi.org/10.1016/j.ijggc.2019.04.007
Davis Hovorka, S., Taylor, L., Sick, V., Bach, L. T., Gill, S. J., Rickaby, R. E. M., Gore, S., & Renforth, P. (2019). CO 2 Removal With Enhanced Weathering and Ocean Alkalinity Enhancement: Potential Risks and Co-benefits for Marine Pelagic Ecosystems. Frontiers in Climate | Www.Frontiersin.Org, 1(7). https://doi.org/10.3389/fclim.2019.00007
De Oliveira Garcia, W., Amann, T., Hartmann, J., Karstens, K., Popp, A., Boysen, L. R., Smith, P., & Goll, D. (2020). Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology. Biogeosciences, 17(7), 2107–2133. https://doi.org/10.5194/bg-17-2107-2020
Ding, J., Wang, T., Piao, S., Smith, P., Zhang, G., Yan, Z., Ren, S., Liu, D., Wang, S., Chen, S., Dai, F., He, J., Li, Y., Liu, Y., Mao, J., Arain, A., Tian, H., Shi, X., Yang, Y., … Zhao, L. (2019). The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nature Communications, 10(1), 1–9. https://doi.org/10.1038/s41467-019-12214-5
Eyhorn, F., Muller, A., Reganold, J. P., Frison, E., Herren, H. R., Luttikholt, L., Mueller, A., Sanders, J., El-Hage Scialabba, N., Seufert, V., & Smith, P. (2019). Sustainability in global agriculture driven by organic farming. Nature Sustainability, 2, 252–255. https://doi.org/10.1038/s41893-019-0266-6
Ferretto, A., Brooker, R., Aitkenhead, M., Matthews, R., & Smith, P. (2019). Potential carbon loss from Scottish peatlands under climate change. Regional Environmental Change, 19, 2101–2111. https://doi.org/10.1007/s10113-019-01550-3
Fitton, N., Alexander, P., Arnell, N., Bajzelj, B., Calvin, K., Doelman, J., Gerber, J. S., Havlik, P., Hasegawa, T., Herrero, M., Krisztin, T., van Meijl, H., Powell, T., Sands, R., Stehfest, E., West, P. C., & Smith, P. (2019). The vulnerabilities of agricultural land and food production to future water scarcity. Global Environmental Change, 58, 101944. https://doi.org/10.1016/j.gloenvcha.2019.101944
Gambhir, A., Butnar, I., Li, P.-H., Smith, P., & Strachan, N. (2019). A Review of Criticisms of Integrated Assessment Models and Proposed Approaches to Address These, through the Lens of BECCS. https://doi.org/10.3390/en12091747
Ganesan, A. L., Schwietzke, S., Poulter, B., Arnold, T., Lan, X., Rigby, M., Vogel, F. R., Van Der Werf, G. R., Janssens-Maenhout, G., Boesch, H., Pandey, S., Manning, A. J., Jackson, R. B., Nisbet, E. G., & Manning, M. R. (2019). Advancing Scientific Understanding of the Global Methane Budget in Support of the Paris Agreement. https://doi.org/10.1029/2018GB006065
Gough, C., & Mander, S. (2019). Beyond Social Acceptability: Applying Lessons from CCS Social Science to Support Deployment of BECCS. Current Sustainable/Renewable Energy Reports, 6, 116–123. https://doi.org/10.1007/s40518-019-00137-0
Grossi, G., Goglio, P., Vitali, A., & Williams, A. G. (2019). Livestock and climate change: Impact of livestock on climate and mitigation strategies. Animal Frontiers, 9(1), 69–76. https://doi.org/10.1093/af/vfy034
Harmsen, J. H. M., van Vuuren, D. P., Nayak, D. R., Hof, A. F., Höglund-Isaksson, L., Lucas, P. L., Nielsen, J. B., Smith, P., & Stehfest, E. (2019). Long-term marginal abatement cost curves of non-CO2 greenhouse gases. Environmental Science and Policy, 99, 136–149. https://doi.org/10.1016/j.envsci.2019.05.013
Hepburn, C., Adlen, E., Beddington, J., Carter, E. A., Fuss, S., Dowell, N. Mac, Minx, J. C., Smith, P., & Williams, C. K. (2019). The technological and economic prospects for CO 2 utilization and removal. Nature |, 575. https://doi.org/10.1038/s41586-019-1681-6
Huang, L. S., Flavell, R., Donnison, I. S., Chiang, Y. C., Hastings, A., Hayes, C., Heidt, C., Hong, H., Hsu, T. W., Humphreys, M., Jackson, J., Norris, J., Schwarz, K. U., Squance, M., Swaller, T., Thomas, I. D., van Assche, W., Xi, Q., Yamada, T., … Cli(2019). Collecting wild Miscanthus germplasm in Asia for crop improvement and conservation in Europe whilst adhering to the guidelines of the United Nations’ convention on biological diversity. Annals of Botany, 124(4), 591–604. https://doi.org/10.1093/aob/mcy231
Jens Kattge, C. (2020). TRY plant trait database-enhanced coverage and open access. Glob Change Biol, 26, 119–188. https://doi.org/10.1111/gcb.14904
Kolosz, B. W., Sohi, S. P., & Manning, D. A. C. (2019). CASPER: A modelling framework to link mineral carbonation with the turnover of organic matter in soil. Computers and Geosciences, 124, 58–71. https://doi.org/10.1016/j.cageo.2018.12.012
Kraxner, F., Luis Vicente-Vicente, J., Patrizio, P., Renforth, P., & Wilcox, J. (2019). Article 1 Citation: Renforth P and Wilcox J (2019) Specialty Grand Challenge: Negative Emission Technologies. Frontiers in Climate | Www.Frontiersin.Org, 1, 1. https://doi.org/10.3389/fclim.2019.00001
Ledo, A., Hillier, J., Smith, P., Aguilera, E., Blagodatskiy, S., Brearley, F. Q., Datta, A., Diaz-Pines, E., Don, A., Dondini, M., Dunn, J., Feliciano, D. M., Liebig, M. A., Lang, R., Llorente, M., Zinn, Y. L., Mcnamara, N., Ogle, S., Qin, Z., … Ayalsew (2019). A global, empirical, harmonised dataset of soil organic carbon changes under perennial crops. Scientific Data, 6(57), 1–7. https://doi.org/10.1038/s41597-019-0062-1
Li, X., Shan, Y., Zhang, Z., Yang, L., Meng, J., & Guan, D. (2019). Quantity and quality of China’s water from demand perspectives. Environmental Research Letters, 14(12). https://doi.org/10.1088/1748-9326/ab4e54
Li, X., Yang, L., Zheng, H., Shan, Y., Zhang, Z., Song, M., Cai, B., & Guan, D. (2019). City-level water-energy nexus in Beijing-Tianjin-Hebei region. Applied Energy, 235, 827–834. https://doi.org/10.1016/j.apenergy.2018.10.097
Malhotra, A., Todd-Brown, K., Nave, L. E., Batjes, N. H., Holmquist, J. R., Hoyt, A. M., Iversen, C. M., Jackson, R. B., Lajtha, K., Lawrence, C., Vindušková, O., Wieder, W., Williams, M., Hugelius, G., & Harden, J. (2019). The landscape of soil carbon data: Emerging questions, synergies and databases. Progress in Physical Geography, 43(5), 707–719. https://doi.org/10.1177/0309133319873309
Meng, J., Yang, H., Yi, K., Liu, J., Guan, D., Liu, Z., Mi, Z., Coffman, D. M., Wang, X., Zhong, Q., Huang, T., Meng, W., & Tao, S. (2019). The Slowdown in Global Air-Pollutant Emission Growth and Driving Factors. One Earth, 1(1), 138–148. https://doi.org/10.1016/j.oneear.2019.08.013
Myrgiotis, V., Williams, M., Rees, R. M., & Topp, C. F. E. (2019). Estimating the soil N2O emission intensity of croplands in northwest Europe. Biogeosciences, 16(8), 1641–1655. https://doi.org/10.5194/bg-16-1641-2019
Nisbet, E. G., Manning, M. R., Dlugokencky, E. J., Fisher, R. E., Lowry, D., Michel, S. E., Lund Myhre, C., Platt, S. M., Allen, G., Bousquet, P., Brownlow, R., Cain, M., France, J. L., Hermansen, O., Hossaini, R., Jones, A. E., Levin, I., Manning, A. C.,(2019). Very Strong Atmospheric Methane Growth in the 4 Years. Global Biochemical Cycles, 33(3), 318–342. https://doi.org/10.1029/2018GB006009
Novara, A., Pulido, M., Rodrigo-Comino, J., Prima, S. D. I., Smith, P., Gristina, L., Giménez-Morera, A., Terol, E., Salesa, D., & Keesstra, S. (2019). Long-term organic farming on a citrus plantation results in soil organic carbon recovery. Geographical Research Letters, 45(1), 271–286. https://doi.org/10.18172/cig.3794
Ou, J., Meng, J., Shan, Y., Zheng, H., Mi, Z., & Guan, D. (2019). Initial Declines in China’s Provincial Energy Consumption and Their Drivers. Joule, 3(5), 1163–1168. https://doi.org/10.1016/j.joule.2019.03.007
Porter, J. R., Challinor, A. J., Henriksen, C. B., Howden, S. M., Martre, P., & Smith, P. (2019). Invited review: Intergovernmental Panel on Climate Change, agriculture, and food—A case of shifting cultivation and history. Global Change Biology, 25(8), 2518–2529. https://doi.org/10.1111/gcb.14700
Pullin, H., Bray, A. W., Burke, I. T., Muir, D. D., Sapsford, D. J., Mayes, W. M., & Renforth, P. (2019). Atmospheric Carbon Capture Performance of Legacy Iron and Steel Waste. Environmental Science and Technology, 53(16), 9502–9511. https://doi.org/10.1021/acs.est.9b01265
Renforth, P. (2019). The negative emission potential of alkaline materials. Nature Communications, 10(1), 1401. https://doi.org/10.1038/s41467-019-09475-5
Renforth, P., Mattos, R., Santos, D., Williamson, P., Mclaren, D. P., Tyfield, D. P., Willis, R., Szerszynski, B., & Markusson, N. O. (2019). a section of the journal Frontiers in Climate Beyond “Net-Zero”: A Case for Separate Targets for Emissions Reduction and Negative Emissions. 1. https://doi.org/10.3389/fclim.2019.00004
Rineau, F., Malina, R., Beenaerts, N., Arnauts, N., Bardgett, R. D., Berg, M. P., Boerema, A., Bruckers, L., Clerinx, J., Davin, E. L., Boeck, H. J., Dobbelaer, T., Dondini, M., Laender, F., Ellers, J., Franken, O., Gilbert, L., Gudmundsson, L., Janssens,(2019). Towards more predictive and interdisciplinary climate change ecosystem experiments. Nature Climate Change, 9, 809–816. https://doi.org/10.1038/s41558-019-0609-3
Roe, S., Streck, C., Obersteiner, M., Frank, S., Griscom, B., Drouet, L., Fricko, O., Gusti, M., Harris, N., Hasegawa, T., Hausfather, Z., Havlík, P., House, J., Nabuurs, G.-J., Popp, A., José Sanz Sánchez, M., Sanderman, J., Smith, P., Stehfest, E., & La(2019). Contribution of the land sector to a 1.5 °C world. Nature Climate Change, 9, 817–828. https://doi.org/10.1038/s41558-019-0591-9
Roxburgh, N., Guan, D., Shin, K. J., Rand, W., Managi, S., Lovelace, R., & Meng, J. (2019). Characterising climate change discourse on social media during extreme weather events. Global Environmental Change, 54, 50–60. https://doi.org/10.1016/j.gloenvcha.2018.11.004
Shan, Y., Zhou, Y., Meng, J., Mi, Z., Liu, J., & Guan, D. (2019). Peak cement-related CO2 emissions and the changes in drivers in China. Journal of Industrial Ecology, 23(4), 959–971. https://doi.org/10.1111/jiec.12839
Shang, Z., Abdalla, M., Kuhnert, M., Albanito, F., Zhou, F., Xia, L., & Smith, P. (2020). Measurement of N2O emissions over the whole year is necessary for estimating reliable emission factors. Environmental Pollution, 259, 113864. https://doi.org/10.1016/j.envpol.2019.113864
Smith, P., Adams, J., Beerling, D. J., Beringer, T., Calvin, K. V, Fuss, S., Griscom, B., Hagemann, N., Kammann, C., Kraxner, F., Minx, J. C., Popp, A., Renforth, P., Luis, J., Vicente, V., & Keesstra, S. (2019). Land-Management Options for Greenhouse Gas Removal and Their Impacts on Ecosystem Services and the Sustainable Development Goals. Annual Review of Environment and Resources, 7, 40. https://doi.org/10.1146/annurev-environ-101718-033129
Smith, P., Calvin, K., Nkem, J., Campbell, D., Cherubini, F., Grassi, G., Korotkov, V., Le Hoang, A., & Arneth, A. (2019). Which practices co-deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Global Change Biology 26(3) 1532-1575 https://doi.org/10.1111/gcb.14878
Smith, P., Soussana, J.-F., Denis Angers, |, Schipper, L., Chenu, C., Daniel, |, Rasse, P., Batjes, N. H., Fenny Van Egmond, |, Mcneill, S., Kuhnert, M., Arias-Navarro, C., Jorgen, |, Olesen, E., Sanz-Cobena, A., & Klumpp, | Katja. (2019). How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Global Change Biology, 26, 219–241. https://doi.org/10.1111/gcb.14815
Soussana, J. F., Lutfalla, S., Ehrhardt, F., Rosenstock, T., Lamanna, C., Havlík, P., Richards, M., Wollenberg, E. (Lini), Chotte, J. L., Torquebiau, E., Ciais, P., Smith, P., & Lal, R. (2019). Matching policy and science: Rationale for the ‘4 per 1000 – soils for food security and climate’ initiative. Soil and Tillage Research, 188, 3–15. https://doi.org/10.1016/j.still.2017.12.002
Sykes, A. J., Macleod, M., Eory, V., Rees, R. M., Payen, F., Myrgiotis, V., Williams, M., Sohi, S., Hillier, J., Moran, D., C Manning, D. A., Goglio, P., Seghetta, M., Williams, A., Harris, J., Dondini, M., Walton, J., House, J., & Smith, P. (2020). Characterising the biophysical, economic and social impacts of soil carbon sequestration as a greenhouse gas removal technology. Glob Change Biol, 26, 1085–1108. https://doi.org/10.1111/gcb.14844
Tian, J., Shan, Y., Zheng, H., Lin, X., Liang, X., & Guan, D. (2019). Structural patterns of city-level CO 2 emissions in Northwest China. Journal of Cleaner Production, 223, 553–563. https://doi.org/10.1016/j.jclepro.2019.03.146
Wang, X., Zheng, H., Wang, Z., Shan, Y., Meng, J., Liang, X., Feng, K., & Guan, D. (2019). Kazakhstan’s CO2 emissions in the post-Kyoto Protocol era: Production- and consumption-based analysis. Journal of Environmental Management, 249, 109393. https://doi.org/10.1016/j.jenvman.2019.109393
Yao, J. G., Bui, M., & Dowell, N. Mac. (2019). Grid-scale energy storage with net-zero emissions: comparing the options. Sustainable Energy & Fuels 11 https://doi.org/10.1039/c9se00689c
Zhang, B., Hastings, A., Clifton-Brown, J. C., Jiang, D., & C Faaij, A. P. (2019). Spatiotemporal assessment of farm-gate production costs and economic potential of Miscanthus × giganteus, Panicum virgatum L., and Jatropha grown on marginal land in China. GCB-Bioenergy 12(5): 310-327 https://doi.org/10.1111/gcbb.12664
Zhang, D., Bui, M., Fajardy, M., Patrizio, P., Kraxner, F., & Dowell, N. Mac. (2019). Unlocking the potential of BECCS with indigenous sources of biomass at a national scale. Sustainable Energy and Fuels, 4(1), 226–253. https://doi.org/10.1039/c9se00609e
2018 (31 peer reviewed/WoS; 25 others)
Abdalla M, Hastings A, Chadwick DR, Jones DL, Evans CD, Jones MB, Rees RM & Smith P (2018) Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. Agriculture, Ecosystems & Environment, 253, 62-81; doi 10.1016/j.agee.2017.10.023.
Alcalde J, Flude S, Wilkinson M, Johnson G, Edlmann K, Bond CE, Scott V, Gilfillan SM, Ogaya X & Haszeldine RS (2018) Estimating geological CO2 storage security to deliver on climate mitigation. Nature Communications 9, 2201; doi 10.1038/s41467-018-04423-1
Alcalde J, Smith P, Haszeldine RS & Bond CE (2018) The potential for implementation of Negative Emission Technologies in Scotland. International Journal of Greenhouse Gas Control, 76, 85-91; doi: 10.1016/j.ijggc.1018.06.021
Balmford A, Amano T, Bartlett H, Chadwoick D, Collins A, Edwards D, Field R, Garnsworthy P, Green R, Smith P, Waters H, Whitmore A, Broom DM, Chara J, Finch T, Garnett E, Gathorne-Hardy A, Hernandez Medrano J, Herrero M, Hua F, Latawiec A, Misselbrook T, Phalan B, Simmons B, Takahashi T, Vause J, zu Ermgassen E & Eisner R (2018). The environmental costs and benefits of high-yield farming. Nature Sustainability, 1, 477-485; doi: 10.1038/s41893-018-0138-5
Bellamy R (2018) Comment: Incentivise negative emissions responsibly. Nature Energy, 3, 532-534; doi 10.1038/s41560-018-0156-6
Bellamy R, Lezaun J & Palmer J (2018) Public perceptions of bioenergy with carbon capture and storage under different policy instrument framings. Presented at International Conference on Negative CO2 Emissions, 22-24 May, 2018, Göteborg, Sweden (10 pp)
Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, Fennell PS, Fuss S, Galindo A, Hackett LA, Hallett JP, Herzog HJ, Jackson G, Kemper J, Krevor S, Maitland GC, Matuszewiski M, Metcalfe IS, Petit C, Puxty G, Reimer J, Reiner DM, Rubin ES, Scott JA, Fhah N, Smit B, Trusler JPM, Webley P, Wilcox J & Mac Dowell N. (2018) Carbon capture and storage (CCS): the way forward. Energy & Environmental Science, 11, 1062-1176; doi: 10.1039/C7EE02342A.
Bui M, Fajardy M & Mac Dowell N (2018) Opportunities for efficiency enhancement of bioenergy with carbon capture and storage (BECCS). Presented at International Conference on Negative CO2 Emissions, 22-24 May, 2018, Göteborg, Sweden (4 pp)
Cumicheo C, Mac Dowell N & Shah N (2018) Natural gas, biomass and carbon capture and storage for low carbon power plants. Presented at International Conference on Negative CO2 Emissions, 22-24 May, 2018, Göteborg, Sweden (6 pp)
Daggash H, Heuberger C & Mac Dowell N (2018) Exploring the role of negative emissions technologies to the UK electricity system. Presented at International Conference on Negative CO2 Emissions, 22-24 May, 2018, Göteborg, Sweden (17 pp)
Fajardy M & Mac Dowell N (2018). The energy return on investment of BECCS: is BECCS a threat to energy security? Energy & Environmental Science, 11, 1581-1594; doi: 10.1039/C7EE03610H.
Fajardy M & Mac Dowell N (2018) Designing optimal BECCS supply chains: a water-energy-carbon-land nexus problem. Presented at International Conference on Negative CO2 Emissions, 22-24 May, 2018, Göteborg, Sweden (12 pp)
Fuss S, Lamb WF, Callaghan MW, Hilaire J, Creutzig F, Amann T, Beringer T, de Oliveira Garcia W, Hartmann J, Khanna T & Luderer G (2018) Negative emissions—Part 2: Costs, potentials and side effects. Environmental Research Letters, 13, 063002; doi 10.1088/1748-9326/aaabf9f.
Fuss S, Lamb WF, Callaghan MW, Hilaire J, Creutzig F, Amann T, Beringer T, Garcia W de O, Hartmann J, Khanna T, Luderer G, Nemet GF, Rogelj J, Smith P, Vicente JLV, Wilcox J, Zamora M del M & Minx J (2018) negative emissions – costs potentials and side effects. Presented at International Conference on Negative CO2 Emissions, 22-24 May, 2018, Göteborg, Sweden (17 pp)
Gattuso JP, Magnan AK, Bopp L, Cheung WW, Duarte CM, Hinkel J, Mcleod E, Micheli F, Oschlies A, Williamson P, Billé R, Chalastani VI, Gates RD, Irisson J-O, Middelburg JJ, Pörtner H-O & Rau GH (2018) Ocean solutions to address climate change and its effects on marine ecosystems. Frontiers in Marine Science, 5, 337; doi: 10.3389/fmars.2018.00337
Geden O, Scott V & Palmer J (2018) Integrating carbon dioxide removal into EU climate policy: Prospects for a paradigm shift. Wiley Interdisciplinary Reviews: Climate Change, e521; doi 10.1002/wcc.521
Geden O, Peters G & Scott V (2018) ‘Full’ vs. ‘limited CDR’ – how to get EU climate policymakers on board. Presented at International Conference on Negative CO2 Emissions, 22-24 May, 2018, Göteborg, Sweden (6 pp)
Geden O, Peters GP & Scott V (2018) Targeting carbon dioxide removal in the European Union. Climate Policy (online); doi: 10.1080/14693062.2018.1536600
Gore S, Renforth P, Perkins R & Barker S (2018) Physiological responses of Corallina spp to an increase in total alkalinity – an ex-situ study. Presented at International Conference on Negative CO2 Emissions, 22-24 May, 2018, Göteborg, Sweden (25 pp)
Gore S, Renforth P & Perkins R (2018) The potential environmental response to increasing alkalinity for negative emissions. Mitigation and Adaptation Strategies for Global Change; 1-21; doi: 10.1007/s11027-018-9830-z
Gough C, Thornley P, Mander S, Vaughan N & Lea-Langton A (2018) Unlocking negative emissions with BECCS; system-level challenges. Presented at International Conference on Negative CO2 Emissions, 22-24 May, 2018, Göteborg, Sweden (12 pp)
Guan D, Meng J, Reiner DM, Zhang N, Shan Y, Mi Z, Shao S, Liu Z, Zhang Q & Davis SJ (2018) Structural decline in China’s CO2 emissions through transitions in industry and energy systems. Nature Geoscience,11, 551-555; doi: 10.1038/s41561-018-0161-1
Hannula I & Reiner DM (2018) Exploring the trade-offs in negative emissions via bioenergy. Presented at International Conference on Negative CO2 Emissions, 22-24 May, 2018, Göteborg, Sweden (8 pp)
Harper AB, Powell T, Cox PM, Hoyuse J, Huntingford C, Lenton TM, Sitch S, Burke E, Chadburn SE, Collins WJ, Comyn-Platt E, Daioglou V, Doelman JC, Hayman G, Robertson E, van Vuuren D, Wiltshire A, Webber CP, Bastos A, Boysen L, Ciais P, Devaraju N, Jain AK, Krause A, Poulter B & Shu S (2018) Relative effectiveness of forests and BECCS in stabilizing climate change at 1.5⁰C. Presented at International Conference on Negative CO2 Emissions, 22-24 May, 2018, Göteborg, Sweden (11 pp)
Harper AB, Powell T, Cox PM, House J, Huntingford C, Lenton TM, Sitch S, Burke E, Chadburn SE, Collins WJ & Comyn-Platt E (2018). Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Nature Communications, 9, 2938; doi: 10.1038/s41467-018-05340-z.
Healey P & Kruger T (2018) UK policy dynamics and the development of negative emissions technologies. Presented at International Conference on Negative CO2 Emissions, 22-24 May, 2018, Göteborg, Sweden (8 pp)
Hepburn C, Adlen E, Beddington J, Carter EA & Smith P (2018) Carbon dioxide utilisation and removal: promise and challenge. Presented at International Conference on Negative CO2 Emissions, 22-24 May, 2018, Göteborg, Sweden (6 pp)
Huitema D, Jordan A, Munaretto S & Hildén M (2018) Policy experimentation: core concepts, political dynamics, governance and impacts. Policy Sciences, 51, 143-159; doi 10.1007/s11077-018-9321-9
Keller DP, Lenton A, Littleton EW, Oschlies A, Scott V & Vaughan NE (2018) The effects of carbon dioxide removal on the carbon cycle. Presented at International Conference on Negative CO2 Emissions, 22-24 May, 2018, Göteborg, Sweden (27 pp)
Keller DP, Lenton A, Litteleton EW, Oschlies A, Scott V & Vaughan NE (2018) The effects of carbon dioxide removal on the carbon cycle. Current Climate Change Reports (online); doi: 10.1007/s40641-018-0104-3
Kruger T (2018) Achieving low-cost CO2 removal and its policy implications. Presented at International Conference on Negative CO2 Emissions, 22-24 May, 2018, Göteborg, Sweden (9 pp)
Lawrence MG, Schäfer S, Muri H, Scott V, Oschlies A, Vaughan N, Boucher O, Schmidt H, Haywood J & Scheffran J (2018) Evaluating climate geoengineering proposals in the cpontext of the Paris Agreement temperature goals. Nature Communications, 9, 3734; doi: 10.1038/s41467-018-05938-3
Lenton A, Matear RJ, Keller DP, Scott V, Vaughan NE (2018) Assessing carbon dioxide removal through global and regional ocean alkalinization under high and low emission pathways. Earth System Dynamics, 9, 339-357; doi 10.5194/esd-9-339-2018
Lenton A, Matear RJ, Keller DP, Scott V & Vaughan NE (2018) Assessing carbon dioxide removal through global and regional ocean alkalinization under high and low emission pathways. Presented at International Conference on Negative CO2 Emissions, 22-24 May, 2018, Göteborg, Sweden (20 pp)
Magnan AK, Billé R, Bopp L, Chalastani VI, Cheung WWL, Duarte CM, Gates RD, Hinkel J, Irission J-O, Mcleod E, Micheli F, Middleburg JJ, Oschlies A, Pörtner H-O, Rau GH, Williamson P & Gattuso J-P (2018) Ocean-based measures for climate action. IDDR Policy Brief 06/18
McLaren D, Tyfield D & Markusson M (2018) The evolving promises of NETs: a cultural political economy perspective on the problem of mitigation deterrence. Presented at International Conference on Negative CO2 Emissions, 22-24 May, 2018, Göteborg, Sweden (17 pp)
Minx JC, Lamb WF, Callaghan MW, Fuss S, Hilaire J, Creutzig F, Amann T, Beringer T, de Oliveira Garcia W, Hartmann J & Khanna T (2018) Negative emissions—Part 1: Research landscape and synthesis. Environmental Research Letters, 13, 063001; doi 10.1088/1748-9326/aaabf9b
Minx JC, Lamb WF, Callaghan MW, Fuss S, Hilaire J, Creutzig F, Amann T, Beringer T, de Oliveira Garcia W, Hartmann J, Khanna T, Lenzi D, Ludere G, Nemet GF, Rogelj, Smith P, Vicente JLV, Wilcox J & del Mar Zamora (2018) Negative emissions – tresearch landscape and synthesis. Presented at International Conference on Negative CO2 Emissions, 22-24 May, 2018, Göteborg, Sweden (21 pp)
Molotoks A, Stehfest E, Doelman J, Albanito F, Fitton N, Dawson TP & Smith P (2018) Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage. Global Change Biology, 24, 5895-5908; doi: 10.1111/gcb.14459
Nemet GF, Callaghan MW, Creutzig F, Fuss S, Hartmann J, Hilaire J, Lamb WF, Minx JC, Rogers S & Smith P (2018) Negative emissions—Part 3: Innovation and upscaling. Environmental Research Letters, 13, 063003; doi 10.1088/1748-9326/aabff4.
Nemet GF, Callaghan MW, Creutzig F, Fuss S, Hartmann J, Hilaire J, Lamb WF, Minx JC, Rogers S & Smith P (2018) Negative emissions – Part 3: Innovation and upscaling. Presented at International Conference on Negative CO2 Emissions, 22-24 May, 2018, Göteborg, Sweden (65 pp)
Patrizio P, Leduc S, Kraxner F, Fuss S, Kindermann G, Mesfun S, Spokas K, Mendoza A, Mac Dowell N, Wetterlund E & Lundgren J (2018) Reducing US coal emissions can boost employment. Joule (online); doi: 10.1016/j.joule.2018.10.004,
Pikaar I, de Vrieze J, Rabaey K, Herrero M, Smith P & Verstraete W (2018) Carbon emission avoidance and capture by producing in-reactor microbial biomass based food, feed and slow release fertilizer: Potentials and limitations. Science of the Total Environment 644, 1525-1530; doi: 10.1016/j.scitotenv.2018.07.089
Pullen H, Sapsford D, Mayes W & Renforth P (2018) An intrusive investigation of the weathering of legacy iron and steel wastes at Consett, County Durham, UK. Presented at International Conference on Negative CO2 Emissions, 22-24 May, 2018, Göteborg, Sweden (14 pp)
Reiner D (2018) Investigating moral hazard and other imagined threats of negative emissions technologies. Presented at International Conference on Negative CO2 Emissions, 22-24 May, 2018, Göteborg, Sweden (34 pp)
Roe S, Lawrence D, Streck C, Obersteiner M, Frank S, Havlik P, Sanchez MJS, Griscom B, House J, Harris N, Gusti M, Sanderman J & Smith P (2018) Contribution of the land sector to a 1.5⁰C world. Presented at International Conference on Negative CO2 Emissions, 22-24 May, 2018, Göteborg, Sweden (13 pp)
Schipper L & Smith P (2018) Letter: Deforestation may increase soil carbon but it is unlikely to be continuous or unlimited. Global Change Biology, 24, 557-558; doi: 10.1111/gbb.13999
Scott V & Geden O (2018) Comment: The challenge of carbon dioxide removal for EU policy-making. Nature Energy, 3, 350-352; doi 10.1038/s41560-018-0124-1
Smith P (2018) Potential impacts of land-based negative emissions Technologies on biodiversity and ecosystem services. Presented at International Conference on Negative CO2 Emissions, 22-24 May, 2018, Göteborg, Sweden (3 pp)
Smith P (2018) Managing the global land resource. Proceedings of the Royal Society B, 285, 20172798; doi: 10.1098/rspb.2017.2798
Smith P & Porter JR (2018) Bioenergy in the IPCC Assessments. Global Change Biology: Bioenergy., 10, 428-431; doi: 10.1111/gcbb.12514
Smith P, Price J, Molotoks A, Warren R & Mahli Y (2018) Impacts on terrestrial biodiversity of moving from a 2⁰C to a 1.5⁰C target. Philosophical Transactions of the Royal Socity A, 376, 20160456; doi: 10.1098/rsta.2016.0456
Vaughan NE, Gough C, Mander S, Littleton EW, Welfle A Gernaat DEHJ & van Vuuren DP (2018) Evaluating the use of biomass energy with carbon capture and storage in low emission scenarios. Environmental Research Letters 13, 044014; doi: 10.1088/1748-9326/aaaa02
Vivian C, Williamson P & Boyd P (2018) Correspondence: Climate engineering includes land and sea. Nature 553, 27; doi 10.1038/d41586-017-09009-3
Williamson P (2018) News & Views: Biodiversity risks of climate control. Nature Ecology & Evolution 2, 416-417
Williamson P (2018) Guest post: 13 ‘ocean-based solutions’ for tackling climate change. Carbon Brief (online), 4 October
Williamson P, Sanders R, Parker R& Howell S (2018) Blue Carbon – a Global View. Briefing notes for Commonwealth Marine Science Event, Southampton 9 April 2018.
Xia Y, Guan D, Meng J, Li Y & Shan Y (2018). Assessment of the pollution–health–economics nexus in China. Atmospheric Chemistry and Physics, 18, 14433-14443; doi: 10.5194/acp-18-14433-2018.
2017 (2 peer reviewed)
Psarras P, Krutka H, Fajardy M, Zhang Z, Liguori S, Mac Dowell N & Wilcox J (2017) Slicing the pie: how big could carbon dioxide removal be? WIREs Energy Environment, 6, e253; doi: 10.1002/wene.253
Redfern S (2017) Worthless mining waste could suck CO2 out of the atmosphere and reverse emissions. The Conversation (20 April).
Renforth P & Henderson P (2017) Assessing ocean alkalinity for carbon sequestration. Reviews of Geophysics, 55, 000533; doi 10.1002/2016RG000533.
Renforth P (2017) Preventing climate change by increasing ocean alkalinity. Eos, 98 (9 August 2017), doi 10.1029/2018EO076919
GGR media coverage
Known primary sources of print, online and broadcast media coverage of the Greenhouse Gas Removal programme and closely-related topics involving GGR researchers are given below, with authorship mostly by journalists. Secondary online coverage of these reports is not identified; however, information on its scale is given where available.
The Economist: 28 April 2018. Scientists struggle to explain a worrying rise in atmospheric methane (includes interview with Euan Nisbet):https://easac.eu/press-releases/details/negative-emission-technologies-will-not-compensate-for-inadequate-climate-change-mitigation-efforts/ (Press release and comments on EASAC Policy Report 35)
The Guardian: https://www.theguardian.com/science/2017/apr/23/can-slag-heaps-help-save-the-planet-carbon-dioxide-capture-climate-change.